EpiCypher新品促销—— CUTANA™ CUT&Tag Kit升级版(V 2)

EpiCypher新品促销—— CUTANA™ CUT&Tag Kit升级版(V 2)

EpiCypher新品促销—— CUTANA™ CUT&Tag Kit升级版(V 2)


EpiCypher CUTANA™ CUT&Tag Kit升级版(Version 2)来了!升级版各方面表现都优于V1版本,

助您持续生成高质量的CUT&Tag数据。新品推广期间凡订购EpiCypher CUTANA™ CUT&Tag Kit,可享额外20%折扣优惠!

前30名下单的客户,还有好礼相送(加油鸭挂件一个)

 

促销时间:即日起-2024.9.25

促销代码:CTK20

 

 促销产品清单 

供应商

产品货号

产品名称

产品规格

EpiCypher     

14-1102       

CUTANA™ CUT&Tag Kit with Primer Set 1      

48 Reactions      

EpiCypher

14-1103

CUTANA™ CUT&Tag Kit with Primer Set 2

48 Reactions

 六个常见问题带您了解CUT&Tag新变革 

EpiCypher新品促销—— CUTANA™ CUT&Tag Kit升级版(V 2)

从单细胞图谱分析、空间表观基因组学到 FFPE 样本分析,CUT&Tag正在成为研究热点1-7。 CUT&Tag也是EpiCypher的研发重点。多年来,EpiCypher的团队开发并优化了多种表观基因组图谱检测方法,包括CUT&Tag、CUT&RUN和ChIP-seq。EpiCypher团队充分利用专业知识研发的CUTANA™ CUT&Tag试剂盒,使这项令人难以置信的技术能够走进全球更多的研究领域和实验室。CUTANA™ CUT&Tag 试剂盒第2版现已上市,而且各方面都优于之前的版本。

 

从表面上看,CUT&Tag非常简单8,9。Protein A/G的融合体在抗体标记的染色质上栓了一种过度活跃的Tn5转座酶。激活的Tn5插入接头序列并切割DNA,这一过程被称为标签化。在EpiCypher的Direct-to-PCR方法中,使用识别接头序列的引物从反应混合物中直接扩增标记DNA,绕过文库制备,提高对低细胞数的敏感性。整个测定过程使用的是与磁珠结合的完整细胞核,并对在使用8联排管时的方法进行了优化,从而实现高通量工作流程和自动化解决方案。

 

为了简化实验过程,EpiCypher团队开发了CUTANA™ CUT&Tag试剂盒,其中包括从细胞到纯化的测序文库所需的所有试剂。请注意,CUT&Tag仅推荐用于组蛋白翻译后修饰(PTMs)的定位。 欲进一步了解如何使用CUT&Tag与其姊妹技术CUT&RUN,请您参阅这篇文章:http://www.jinpanbio.com/xwzx_2376.html。

 

尽管已取得了一些进展,但CUT&Tag仍然是一项具有挑战性的表观基因组检测技术。为了使其方法更加可靠,EpiCypher研发团队不断测试CUTANA™ CUT&Tag实验方案,研究不同的缓冲液成分,调整反应条件,并测试了多种细胞类型。CUTANA™ CUT&Tag试剂盒的第二版展现了EpiCypher最新的优化成果。

 

✍ 为什么科研学者会对CUT&Tag感兴趣?

科研人员之所以对CUT&Tag非常感兴趣,是因为它可以让科学家在不降低数据质量的情况下简化实验流程,这是ChIP不可能做到的。自从CUT&Tag出现以来,研发人员终于能够开发出更高通量的染色质图谱分析。与ChIP-seq相比,CUT&Tag可以使用更少的细胞,花费更少的时间,对更多的反应进行多重测序,并生成更高分辨率的数据。

 

✍ 为什么CUT&Tag比ChIP-seq和CUT&RUN快得多呢?

由于各种原因,CUT&Tag比其他染色质图谱分析技术更快。从样本处理的角度看,CUT&Tag无需再多花时间优化细胞裂解、交联或染色质碎裂。CUT&Tag使用完整的细胞核,可在15分钟内从新鲜或冷冻的细胞中获取。然后将细胞核与固体支撑物(ConA磁珠)结合,这样就能限制样品的损失,并可使用磁力架快速清洗。这一特点使该方法与8联排管兼容,进一步加快了实验速度。

从实验方法的角度看,直接插入测序接头无需进行标准的文库准备步骤,不仅节省了一天的工作时间,而且减少了样品损失。大多数CUT&Tag实验流程中需要纯化DNA,然后进行 PCR,而EpiCypher的Direct-to-PCR策略允许实验人员直接从CUT&Tag反应中扩增标记的DNA。因为所有的实验过程都是在8联排管中进行的,所以实验人员可以将接头引物和PCR混合物直接加入到CUT&Tag反应管中。对于时间紧张的项目,实验人员可以在CUT&Tag第2天结束时加载测序仪,第3天就可以开始处理数据。对于科研人员来讲,这样的周转时间非常宝贵。

 

✍ 与ChIP-seq相比,为什么在CUT&Tag中可以使用更少的细胞呢?

因为简化了实验流程,降低了背景信号影响,所以CUT&Tag需要的起始细胞数量较少。在 ChIP-seq中,需要交联和染色质超声处理或片段化来制备input的染色质。在免疫沉淀(IP)步骤中,抗体被添加到染色质片段化池中。理想情况下,抗体只与靶标结合,但免疫沉淀几乎总是能回收非靶标片段,并在测序数据中引入背景信号或测序假象。科学家通常会增加细胞数量以克服背景信号影响并提高数据质量,但这种解决方法会限制低数量细胞的应用。

 

CUT&Tag使用与磁珠结合的完整细胞核,不需要按照传统的IP步骤进行实验,从而减少了背景信号影响。EpiCypher的方法还绕过了ChIP和标准文库制备中的多个DNA纯化步骤,有助于减少样本的损失。总之,与ChIP-seq相比,CUT&Tag可以减少约10倍的材料,这是非常不可思议的。

 

✍ 科研学者在使用CUT&Tag实验操作流程时最常见的问题是什么呢?

研究者进行CUT&Tag实验时遇到的主要问题是产量低甚至没有产量,这可能是由多种变量影响的。产率低通常是由样品预处理不佳、实验过程中样品损失、ConA磁珠结合不上以及反应混合问题造成的。这些问题都有关联,因此解决起来比较复杂。

 

样品制备不良的表现是细胞裂解、细胞核制备中有碎片或ConA磁珠结合后上清液中存在未结合的细胞核。如果样本预处理出现上述情况,就可能无法进行标签化,进而导致产量低。

 

混合不充分也是产量低的一个常见原因。保持磁珠在溶液中对检测的成功至关重要:它有助于确保抗体和pAG-Tn5的均匀分布,并有助于高效的indexing PCR。然而,在实验方案中的第2天,ConA 磁珠浆会变得粘稠且难以重悬,尤其是在标记之后。虽然在处理材料时应当温和,但如果不能很好的混合CUT&Tag反应物,就会严重降低产量。 EpiCypher实验方案详细说明了何时以及如何混合样品,以便最终稳定地回收CUT&Tag生成的文库。

 

✍ 新版CUT&Tag试剂盒有什么亮点呢?

版本更新的重点是帮助使用者持续生成高质量的CUT&Tag数据。EpiCypher的团队详细讨论了实验流程的每个步骤。比如,为什么缓冲液要使用某种成分或pH值?对细胞核或细胞生理有何影响?这些问题帮助EpiCypher团队找到了可以改进的关键点。

 

pAG-Tn5的表征表明,酶本身并不是影响产量问题所在,且标记反应是高效的,但样品在标记后的实验步骤中损失了。为此,EpiCypher团队对样品处理、缓冲液成分、方案步骤进行了广泛的头对头比较研究,并对优秀的竞争产品进行了测试。

 

这些实验揭开了问题的神秘面纱。TAPS Buffer中的低盐浓度导致了渗透性变化和细胞核裂解。混合技术也尤为重要,它是造成样品损失的原因之一。例如,加入SDS Release Buffer后,样品变得粘稠,无法移液。在实验方案的其他部分,由于涡旋使材料粘在离心管边上,也会导致样品损失。

 

根据实验结果,EpiCypher团队去掉了标记后的低盐 TAPS Buffer洗涤,取而代之的是含有生理盐的Pre-Wash Buffer,以保持细胞核的完整性。EpiCypher团队还完善了实验流程中具体的重悬浮和混合方法,以帮助指导使用者进行最佳操作。EpiCypher内部测试了修改后的CUT&Tag实验方案,结果发现新手和有经验的使用者的实验成功率都有所提高,这说明了CUT&Tag改进后的实用性。

 

✍ 这些实验操作流程的变化适用于正在使用第1版CUTANA™ CUT&Tag Kit或DIY CUT&Tag的科研人员吗?

是的。所有实验流程的更改都与CUTANATM CUT&Tag Kit的第1版以及 DIY CUT&Tag流程(https://www.epicypher.com/resources/protocols/cutana-pag-tn5-resources/)兼容。

您可以使用现有的试剂盒组分来按照第2版的实验流程操作,而不需要任何新材料!

 

需要注意的主要区别是试剂盒中去掉了TAPS Wash Buffer。之前使用TAPS Wash Buffer进行标记后洗涤,现在使用等体积的Pre-Wash Buffer洗涤。EpiCypher在该试剂盒中为使用者提供了充足的Pre-Wash Buffer来完成这一步骤。

 

 总 结 

CUTANA™ CUT&Tag Kit版本的更新反映了EpiCypher严格的研发工作。EpiCypher团队将继续完善CUT&Tag和CUT&RUN的相关研究,包括针对新应用和研究领域的优化。如果您有其他疑问,第2版的实验操作流程(https://www.epicypher.com/resources/protocols/cutana-cut-and-tag-kit-manual/)也许能解决您的问题,也欢迎联系EpiCypher中国代理商上海金畔生物咨询。

 

 参考文献 

1. Janssens DH et al. Scalable single-cell profiling of chromatin modifications with sciCUT&Tag. Nat Protoc 19, 83-112 (2024). https://doi.org/10.1038/s41596-023-00905-9.


2. Bartosovic M et al. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat Biotechnol 39, 825-35 (2021). https://doi.org/10.1038/s41587-021-00869-9.


3. Wu SJ et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat Biotechnol 39, 819-24 (2021). https://www.doi.org/10.1038/s41587-021-00865-z.


4. Deng Y et al. Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular level. Science 375, 681-6 (2022). https://doi.org/10.1126/science.abg7216.


5. Zhang D et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616, 113-22 (2023). https://doi.org/10.1038/s41586-023-05795-1.


6. Henikoff S et al. Direct measurement of RNA Polymerase II hypertranscription in cancer FFPE samples. bioRxiv 2024.02.28.582647 (2024). https://doi.org/10.1101/2024.02.28.582647.


7. Henikoff S et al. Epigenomic analysis of formalin-fixed paraffin-embedded samples by CUT&Tag. Nat Commun 14, 5930 (2023). https://doi.org/10.1038/s41467-023-41666-z.


8. Kaya-Okur HS et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10, 1930 (2019). https://doi.org/10.1038/s41467-019-09982-5.


9. Kaya-Okur HS et al. Efficient low-cost chromatin profiling with CUT&Tag. Nat Protoc 15, 3264-83 (2020). https://doi.org/10.1038/s41596-020-0373-x.

如需了解更多详细信息或相关产品,

请联系EpiCypher中国代理商上海金畔生物 

请联系EpiCypher中国代理商-上海金畔生物 

Lambda DNA-Mono Cut Mix #N3019S 100 gel lanes-NEB酶试剂 New England Biolabs

上海金畔生物科技有限公司代理New England Biolabs(NEB)酶试剂全线产品,欢迎访问官网了解更多产品信息和订购。

产品资料 – Markers 和 Ladders (DNA/RNA 和蛋白质) – 常规 DNA Markers

Lambda DNA-Mono Cut Mix                              收藏

货 号
规 格
价 格(元)
北京库存
上海库存
广州库存
成都库存
苏州库存
武汉库存

#N3019S
100 gel lanes
939.00

Download:       

  • isoschizomers     |
  • compatible ends     | 
  • single letter code

相关产品

 a DNA-Mono Cut Mix
Lambda DNA-HindⅢ 消化
Lambda DNA-BstEⅡ 消化
ΦX174 DNA-HaeⅢ消化
pBR322 DNA-BstNI 消化
pBR322 DNA-Msp I 消化

概述

NEB 提供一系列宽范围双链 DNA 分子量标准,可用于常规琼脂糖凝胶电泳。这些分子量标准的大小范围约为 10-23,000 bp。

各种常规分子量标准的电泳图如下。每种 Marker 产生的条带数以及片段大小等详细信息可以查看说明书或登陆网站 www.jinpanbio.com,www.jinpanbio.cn 查询。


此外,这些常规 Marker 还可用来进行 DNA 粗略定量,关于 DNA 质量信息请参考说明书或网站。

Lambda DNA-Mono Cut Mix 需进行脉冲场凝胶电泳以得到最佳分离效果,可作为 RFLP Marker 在 Southern 杂交中使用,能提供简单、清晰的凝胶图像。 

浓度

pBR322 DNA-BstNI 消化、pBR322 DNA-MspI 消化和 ΦX174 DNA-HaeⅢ消化的浓度为 1,000 μg/ml。Lambda DNA-BstEⅡ消化、Lambda DNA-HindⅢ消化和 Lambda DNA-Mono Cut Mix 的浓度为 500 μg/ml。 

使用建议

可用 TE 或其它低离子强度缓冲液稀释 Marker。不建议用 dH2O 稀释,因为这样会引起 DNA 降解。

60℃ 加热 3 分钟可使 Lambda DNA-HindⅢ消化和 Lambda DNA-BstEⅡ消化的 Marker 中片段 1 和 4 的粘性末端分开。 

Lambda DNA-Mono Cut Mix                               #N3019S 100 gel lanes

CUTANA™ 分析——CUT&RUN和CUT&Tag试剂盒及相关产品

CUTANA™ 分析——CUT&RUN和CUT&Tag试剂盒及相关产品

CUT&RUN和CUT&Tag分析正在影响并改变目前的表观基因组学分析,其具有操作简单、使用细胞样本少和信噪比高等特点。与传统的ChIP-seq分析方法相比,CUTANA™分析方法具有多种优势:

√ 使用更少的细胞

√ 简化工作流程,没有染色质裂解及免疫沉淀反应

√ 性价比更高

CUTANA™ 分析——CUT&RUN和CUT&Tag试剂盒及相关产品

*CUTANA™分析仅用ChIP-seq所需的一小部分细胞和测序深度即可生成高质量的表观基因组图谱。上图分别为CUT&Tag(蓝色),CUT&RUN(橙色)和ChIP-seq(灰色)在300 kb区域的实验结果。

相关产品

名称

货号

CUTANA™ ChIC/CUT&RUN Kit

14-1048

CUTANA™ CUT&Tag Kit

14-1102/14-1103

CUTANA™ CUT&RUN Library Prep Kit with Primer Set 1/2

14-1001/14-1002

更多产品详情,请联系EpiCypher全国代理-上海金畔生物 

CUTANA™ CUT&RUN Assays ——实现超敏基因组定位

CUTANA™ CUT&RUN Assays ——实现超敏基因组定位

蛋白质和核酸是构成生命体最为重要的两类生物大分子,二者间的相互作用一直是分子生物学研究的中心问题之一。研究细胞内蛋白质-DNA相互作用的常用方法是染色质免疫沉淀(Chromatin Immunoprecipitation, ChIP) ,同时ChIP还常被用于确定基因组上与组蛋白修饰相关的特定位点(即组蛋白修饰酶的靶标)。但是由于ChIP存在高细胞需求量、技术难度大、成本高、深度测序、数据质量差以及变量大等缺点,在实际应用的过程中局限颇多。

核酸酶靶向切割和释放(Cleavage Under Targets and Release Using Nuclease, CUT&RUN)是表观遗传学的一种新型技术方法,在蛋白质-DNA的相互作用以及组蛋白翻译后修饰(PTMs)的基因组定位研究中取得突破性进步。CUT&RUN对传统的ChIP检测方法进行了重大的修改,消除ChIP固有的一些缺点,简化工作流程,跳过了ChIP-seq中包括染色质片段化和抗体pull down等非常具有挑战性步骤,用更少的细胞量和测序读数获取更佳的数据。

对于新用户,CUTANA™ CUT&RUN提供了您开展实验所需要的一切,包括简单易上手的实验套装、实验方案以及验证过的抗体等等,实验操作流程如下:

  CUT&RUN工作流程  

● 固定细胞
CUTANA™ CUT&RUN Assays  ——实现超敏基因组定位
● 添加抗体和pAG-MNase(Protein A-Protein G-微球菌核酸酶)
● 激活MNase并切割DNA
● 结合抗体的复合物扩散至溶液中
● 准备测序文库
● 测序

  为什么选择CUTANA™ CUT&RUN?

如下图所示,CUTANA™ CUT&RUN在使用更低测序读数的同时,结果要更优于ChIP-seq。

CUTANA™ CUT&RUN Assays  ——实现超敏基因组定位

CUTANA™ CUT&RUN Assays  ——实现超敏基因组定位

  CUTANA™ CUT&RUN优势:

● 节省了10倍的测序成本,省时高效。(与ChIP-seq相比)

● 低细胞需求量。(低至5k)

● 可作用于多种多样的靶标和样本类型,

● 操作流程简单易上手。

● 测序结果信噪比高。

● 实验可重复性好。


CUT&RUN可以用于研究多种类型的靶标,包括转录因子、染色质相互作用蛋白和组蛋白翻译后修饰,还为一些研究染色质重塑等十分具有挑战性的目标提供了机会。


下图为具有代表性的基因组浏览轨迹,展示了使用K562细胞的CUTANA CUT&RUN结果。通过将每个样本中约300-800万个测序reads用于表观遗传学的各靶标,可以观察到具有期望分布面的清晰峰。

CUTANA™ CUT&RUN Assays  ——实现超敏基因组定位

  新手推荐产品:

CUTANATM CUT&RUN AND LIBRARY PREP KITS

EpiCypher的CUTANA™ CUT&RUN AND LIBRARY PREP KITS为用户提供了染色质定位实验的细胞-测序解决方案,该试剂盒包含了从细胞到测序流程中所有必要的对照以及验证试剂,充分确保实验能够获得高质量数据。

CUTANA™ CUT&RUN Assays  ——实现超敏基因组定位

√ CUT&RUN首推产品! 

√ 功能全面,新人必备!

√ 兼容性强:新鲜、冷冻或交联的细胞/细胞核均可使用!

CUTANATM REAGENTS

CUTANA™系列的所有试剂均经过测试和验证,适用于本公司CUTANA™ CUT&RUN优化后的工作流程。

CUTANA™ CUT&RUN Assays  ——实现超敏基因组定位

√ 用于设计和执行制定的CUT&RUN实验

√ 产品齐全:ConA磁珠、pAG-MNase、大肠杆菌插入DNA、DNA

试剂盒等均可单独购买。

CUTANATM CUT&RUN ANTIBODIES

CUTANA™ CUT&RUN Assays  ——实现超敏基因组定位

√  均通过科学家的大量验证,性能稳定!

√  可用于各种染色质靶标,包括组蛋白翻译后修饰、转录

和染色质重塑。

√  定期查验新靶点!

  SNAP Spike-ins:表观基因组学中的核小体定量对照  

SNAP Spike-ins将含有DNA条形码且携带组蛋白(已翻译后修饰)的半合成核小体作为表观基因组学分析的定量峰值对照,提高了分析可靠性的同时,还实现了精确样本的标准化。此外,SNAP Spike-ins不仅优势多,而且使用范围广,可适用但不局限于以下方面:

√  与CUT&RUN、CUT&Tag、和ChIP-seq测定兼容;

√  抗体特异性分析验证,可原位操作;

√  监测分析性能,可持续监测检测情况;

√  定量样本比较,可直接定量读数;

√  故障排除实验。

CUTANA™ CUT&RUN Assays  ——实现超敏基因组定位

 

上图为产品SNAP-CUTANA™ K-METSTAT PANEL,该产品包含了15个携带疾病相关赖氨酸甲基化修饰的dNucs(即含DNA条形码的半合成核小体)和一个未经修饰的dNucs对照。

 

如需了解更多详细信息或相关产品,请联系EpiCypher中国代理商-上海金畔生物 

CUTANA CUT&RUN 2022重要文献精选

CUTANA CUT&RUN 2022重要文献精选


CUT&RUN(Cleavage Under Targets and Release Using Nuclease)是一项用于在细胞天然染色质环境下检测蛋白质-DNA相互作用的强大技术。在CUT&RUN中,蛋白A和蛋白G与微球菌核酸酶(pAG-MNase)融合,并选择性地切割抗体标记的染色质,经过剪切后的片段从细胞中分离出来,纯化,最后通过NGS进行分析。作为ChIP的高效替代方案,CUT&RUN克服了传统ChIP-seq分析法的许多缺点。

 

与ChIP-seq相比CUT&RUN的优势 

● 需要的细胞数量较少:CUTANA™ CUT&RUN分析只需要5,000个细胞即可生成高分辨率的结果。

● 操作步骤简单:CUTANA™ CUT&RUN在3天内即可完成从细胞到文库的建立。还适用于多道移液器和8联排管,提高了分析的重复性和通量。

● 测序成本降低:只需要300 – 800万个测序读段,高通量测序可以检测更多样本。

● 减少实验中需要优化的步骤CUT&RUN跳过了ChIP-seq中最具挑战性的部分(包括交联、染色质片段化和免疫沉淀(IP)),只需要较少的优化步骤。

 

EpiCypher可提供包括CUTANA CUT&RUN Assay Kit和 Library Prep Kit,以及一系列不断扩大的经过CUT&RUN验证的抗体产品。SNAP-CUTANA™ K-MetStat Panel提供了一个基本的检测控制,可用于抗体验证,实验流程的优化,并作为实验成功与否的直接衡量标准。下面重点介绍了一些研究,展示了CUTANA CUT&RUN在不同的研究领域的应用。希望这些文献能够为CUT&RUN如何应用于您的项目提供思路。

 

1. Systematic comparison of CRISPR-based transcriptional activators uncovers gene-regulatory features of enhancer–promoter interactions

 

Wang et al. Nucleic Acids Research, 2022. PMID: 35849129

细胞类型:Transfected HeLa cells and HEK293T cells

目标蛋白:H3K27ac

主要内容:argeted modification of the epigenome represents a promising strategy for precision medicine, since it allows activation of genes without disrupting DNA sequence. CRISPR/Cas9 has been cleverly modified for this purpose by fusing a nuclease-defective Cas9 (dCas9) with transcriptional activation domains, such as histone lysine acetyltransferases CBP or p300. Here, Wang et al. used CUT&RUN to help analyze local and genome-wide changes in chromatin structure when using different dCas9 activation systems. In agreement with previous studies, they found that dCas9 activators were highly variable, with results varying by the type of dCas9 fusion protein, cell type, and genomic target. They also discovered that targeting dCas9 activators to enhancers can induce reciprocal epigenomic changes at target promoters, leading to increased gene expression.

上榜理由:虽然dCas9激活系统提供了特定的基因激活,但表观基因组变化也是可能的。CUT&RUN做为一种快速可靠的染色质分析检测方法,可帮助分析使用不同dCas9激活系统时,染色质结构的局部和全基因组变化。

 

2. Histone H3 proline 16 hydroxylation regulates mammalian gene expression

Liu et al. Nature Genetics, 2022. PMID: 36347944

细胞类型:MDA-MB-231 cells (hypoxia-sensitive breast cancer cells) and 293T cells; includes experiments with and without knockdown of EGLN2 using the inducible CRISPR v2 system

目标蛋白:H3P16oh, EGLN2, KDM5A, H3K4me3

主要内容:Low oxygen (hypoxia) induces transcriptional changes that drive tumor growth and increase cancer severity. Although multiple studies show that chromatin is responsive to hypoxia and plays a role in these processes, additional information is needed to provide a cohesive mechanism. Here, Liu et al. defined a novel histone PTM directly linked to hypoxia: prolyl (proline) hydroxylation on histone H3, proline 16. As part of this work, the authors used CUTANA CUT&RUN to validate H3P16oh antibodies, characterize its enrichment, and determine its function during hypoxia. Their experiments revealed substantial crosstalk between H3P16oh and H3K4me3, establishing H3P16oh as a hypoxia-sensitive regulator of gene expression and cell proliferation in breast cancer cell lines.

上榜理由:这篇文章为如何使用CUTANA CUT&RUN分析法来研究新的PTMs提供了重要思路。Li等人还展示了组蛋白PTMs如何调节疾病中的染色质结构和基因表达,为表观遗传学靶向药物开发提供了支持。

 

3. Mapping cis-regulatory elements in human neurons links psychiatric disease heritability and activity-regulated transcriptional programs

Sanchez-Priego et al. Cell Reports, 2022. PMID: 35649373

细胞类型: Excitatory glutamatergic neurons and inhibitory GABAergic neurons derived from human pluripotent stem cells, with and without stimulation (membrane depolarization)

目标蛋白:H3K27ac (0, 30, 90 min), FOS (0, 2 hr)

主要内容:Genetic risk variants for psychiatric diseases are concentrated in cis-regulatory DNA, suggesting roles in cell-type specific gene expression. However, due to the inherent challenges of studying human brain tissues, these genomic regions remain largely unexplored. In this paper, Sanchez-Priego et al. generated large amounts of excitatory and inhibitory neurons using human pluripotent stem cells. They profiled cells using a variety of techniques, including CUT&RUN, ATAC-seq, and RNA-seq, to identify putative cis-regulatory elements (i.e. enhancers) associated with activity-dependent gene expression. To support the relevance of their results to human disease, the authors compared the list of candidate enhancers to a large database of psychiatric-disease risk variants, which revealed significant links to schizophrenia, ADHD, and bipolar disorder.

上榜理由:Sanchez-Priego等人没有只针对个体变异进行研究,而是采取了整体法,他们使用多种技术,包括CUT&RUN, ATAC-seq和RNA-seq对细胞进行分析,定义疾病相关细胞类型中的表观基因组元素,并与不同数据库进行比较引用。

 

4. Acute depletion of human core nucleoporin reveals direct roles in transcription control but dispensability for 3D genome organization

Zhu et al. Cell Reports, 2022. PMID: 36323253

细胞类型:HCT116 cell line (all targets), HeLa cell line (NUP93 only)

目标蛋白:NUP93, NUP35, NUP205, BRD4, SEC13

主要内容:The nuclear pore complex acts as the gateway to the nucleus in eukaryotic cells and is composed of ~30 different nucleoporin proteins (NUPs). There is ample evidence that the nuclear pore complex helps regulate 3D chromatin organization and transcription. However, the functions of NUP subunits in human cells are not defined. Here, Zhu et al. studied NUPs using multiple techniques, including CUTANA CUT&RUN, Hi-C, PRO-seq, and CRISPR/dCas9 tethering. CUT&RUN showed that NUP proteins were generally bound to active chromatin regions. NUP93 specifically associated with promoters and enhancers and directly regulated transcription (similar to Brown et al. and Ibarra et al.). Strikingly, the authors found that core NUP proteins were not required for 3D chromatin architecture, in contrast to leading hypotheses in the field.

上榜理由:CUTANA CUT&RUN的一个关键优势是能够在自然条件下定位大分子复合物的亚基,而不需要交联。值得注意的是,在哺乳动物细胞中研究NUP蛋白和核孔复合物一直具有挑战性,而利用CUT&RUN分析技术更能够快速的助力这项研究。

 

相关产品推荐

产品名称

货号

规格

CUTANA™ ChIC/CUT&RUN Kit

14-1048

48 Reactions

CUTANA™ pAG-MNase for ChIC/CUT&RUN Workflows

15-1016

50 Reactions

250 Reactions

CUTANA™ CUT&RUN Library Prep Kit

14-1001

48 Reactions

SNAP-CUTANA™ K-MetStat Panel

19-1002

50 Reactions

Histone H3K4me3 Antibody, SNAP-Certified™ for CUT&RUN and ChIP

13-0041

100 μg

AR CUTANA™ CUT&RUN Antibody

13-2020

100 μL

JUN/c-Jun CUTANA™ CUT&RUN Antibody

13-2019

100 μL

EGFR CUTANA™ CUT&RUN Antibody

13-2018

100 μL

CHD4 CUTANA™ CUT&RUN Antibody

13-2016

100 μL

TP53/p53 CUTANA™ CUT&RUN Antibody

13-2015

100 μL

EZH2 CUTANA™ CUT&RUN Antibody

13-2026

100 μL

SP1 CUTANA™ CUT&RUN Antibody

13-2024

100 μL

ELF1 CUTANA™ CUT&RUN Antibody

13-2023

100 μL

Menin CUTANA™ CUT&RUN Antibody

13-2021

100 μL

Histone H4K20me3 Antibody, SNAP-Certified™ for CUT&RUN

13-0054

100 μg

Histone H3K27me1 Antibody, SNAP-Certified™ for CUT&RUN

13-0052

100 μg

HA Tag CUTANA CUTandRUN Antibody

13-2010

100 μg

CTCF CUTANA™ CUT&RUN Antibody

13-2014

100 μL

NCOA3/SRC3 CUTANA™ CUT&RUN Antibody

13-2013

100 μL

Estrogen Receptor Alpha (C-Terminal) CUTANA™ CUT&RUN Antibody

13-2012

100 μL

Estrogen Receptor Alpha (N-Terminal) CUTANA™ CUT&RUN Antibody

13-2011

100 μL

CHD3 CUTANA CUTandRUN Antibody

13-2009

100 μL

BRM/SMARCA2 CUTANA™ CUT&RUN Antibody

13-2006

100 μL

CHD1 CUTANA™ CUT&RUN Antibody

13-2008

100 μL

SNF2H/SMARCA5 CUTANA CUTandRUN Antibody

13-2007

100 μL

SNF2L/SMARCA1 CUTANA™ CUT&RUN Antibody

13-2005

100 μL

MLL1/KMT2A CUTANA™ CUT&RUN Antibody

13-2004

100 μL

BRD4 CUTANA CUTandRUN Antibody

13-2003

50μL

BRG1/SMARCA4 CUTANA™ CUT&RUN Antibody

13-2002

100 μL

FOXA1/HNF3A CUTANA™ CUT&RUN Antibody

13-2001

100 μL

CUTANA™ Rabbit IgG CUT&RUN Negative Control Antibody

13-0042

100 μg

Histone H3K4me2 Antibody, SNAP-Certified™ for CUT&RUN

13-0027

100 μg

Histone H3K9me1 Antibody, SNAP-Certified™ for CUT&RUN and ChIP

13-0029

100 μg

如需了解更多详细信息或相关产品,请联系EpiCypher中国代理商-上海金畔生物 

CUTANA™ CUT&Tag Kit添新品啦!助您轻松应对CUT&Tag实验

CUTANA™ CUT&Tag Kit添新品啦!助您轻松应对CUT&Tag实验

CUTANA™ CUT&Tag Kit添新品啦!助您轻松应对CUT&Tag实验


EpiCypher推出新品CUTANA™ CUT&Tag Kit,为组蛋白翻译后修饰(PTM)的超灵敏定位提供了全面的解决方案。CUTANA™ CUT&Tag Kit使用专有的Direct-to-PCR策略,在一个管中即可完成从细胞到PCR文库扩增,无需传统的文库制备流程,最大限度地减少样本损失。与多道移液器兼容,提高了通量和重复性。


蛋白质翻译后修饰 (PTM) 通过功能基团或蛋白质的共价添加、调节亚基的蛋白水解切割或整个蛋白质的降解来增加蛋白质组的功能多样性。这些修饰包括磷酸化、糖基化、泛素化、亚硝基化、甲基化、乙酰化、脂质化和蛋白水解,几乎影响正常细胞生物学和发病机制的所有方面。染色质免疫共沉淀技术(ChIP)作为用于研究组蛋白的各种共价修饰与基因表达的常用技术,仍然具有相当的局限性。近年来,基因组学和表观遗传学领域引入了两种新颖的染色质分析方法,即核酸酶靶向切割和释放技术(CUT&RUN)与靶向剪切及转座酶技术(CUT&Tag),克服了ChIP法的诸多缺点,令研究人员能够用更低的成本、更高的效率得到信噪比更高、重复性更好的实验结果。


什么是CUT&Tag技术?

CUT&Tag全称Cleavage Under Targets and Tagmentation (CUT&Tag),是基于CUT&RUN的新兴姊妹技术。在EpiCypher的CUT&Tag实验流程中,孵育结合好特异性抗体与靶标蛋白后,加入蛋白 A、蛋白G与Tn5的复合物(pAG-Tn5),使得转座体进入细胞并与抗体结合,间接地固定在靶蛋白上;激活Tn5酶的切割活性,将靶蛋白结合的DNA区域切断,从而达到提取DNA、进行PCR扩增、构建文库的目的。在Tn5上融合了protein A/G抗体结合功能域的转座体pAG-Tn5是该技术的核心,使研究者不必碎裂染色质并跳过了传统的文库准备步骤(end repair, adapter ligation)。

CUTANA™ CUT&Tag Kit添新品啦!助您轻松应对CUT&Tag实验

CUT&Tag技术有何特色?

精简化的工作流程跳过了传统ChIP-seq具有挑战性的步骤,包括染色质碎片和抗体下拉,用更少的细胞和测序读段生成高分辨率数据。

◆ 更短的实验周期

在两天内能够完成从细胞到文库的建立,而传统的ChIP-seq需要五天(或更长时间)。

CUTANA™ CUT&Tag Kit添新品啦!助您轻松应对CUT&Tag实验

◆ 更少的细胞需求量与更低的成本

CUTANA™CUT&Tag分析仅使用10000-100000个细胞核即可生成高分辨率的图谱,甚至可用于单细胞水平测序,便于单细胞或珍贵样本的分析;与传统ChIP-seq(需要约3000万次读取)相比,CUT&Tag检测仅需要500-800万次测序读段,节省实验成本。

CUTANA™ CUT&Tag Kit添新品啦!助您轻松应对CUT&Tag实验

◆ 更高的信噪比

CUTANA™CUT&Tag使用较少的起始细胞、更少的测序读段,也能得到较低的背景信号和较强的目的信号。

 

◆ 无需文库准备步骤

测序文库的准备工作既费时又昂贵。通过在抗体结合的目标位点添加测序适配器,能够实现跳过传统的文库准备步骤(end repair, adapter ligation),极大地简化了实验流程。EpiCypher的CUTANA™CUT&Tag分析通过直接从反应混合物中扩增标记DNA进一步简化了这一策略,实现在一个管中完成从细胞到PCR文库扩增。

 

产品信息

货号

品名

规格

14-1102     

CUTANA™ CUT&Tag Kit , Primer Set 1      

48 reactions      

14-1103    

CUTANA™ CUT&Tag Kit , Primer Set 2    

48 reactions    

 

CUTANA™ CUT&Tag试剂盒:用户友好的表观基因组分析工具

试剂盒内包括CUT&Tags实验所需所有组分与对照品:

✔ 对照抗体 (Control antibodies)

✔ spike-in对照 (Nucleosome spike-in controls)

✔ 详细的质控分析评价指标 (Detailed quality control metrics) 

✔ 故障排除小贴士 (Troubleshooting tips)

 

试剂盒组分(蓝色的为EpiCypher特有的组分)

名称

货号

pAG-Tn5

15-1017

H3K27me3 Positive Control Antibody

13-0055t

Rabbit IgG Negative Control Antibody

13-0042t

Anti-Rabbit Secondary Antibody

13-0047

SNAP-CUTANA™ K-MetStat Panel

19-1002t

ConA Beads

21-1401

Non-Hot Start 2X PCR Master Mix

15-1018

8-strip Tubes

10-0009t

4.5 M NaCl

21-1013

0.5 M EDTA

21-1014

1 M MgCl2

21-1015

TAPS Buffer

21-1016

SDS Release Buffer

21-1017

SDS Quench Buffer

21-1018

0.1X TE Buffer

21-1019

Pre-Wash Buffer

21-1020

Pre-Nuclear Extraction Buffer

21-1021

Bead Activation Buffer

21-1022

5% Digitonin

21-2023

1 M Spermidine

21-1024

SPRIselect reagent manufactured by 

Beckman Coulter, Inc

21-1404

Multiplexing Primers

14-1102 and 14-1103 each contain combinatorial dual 

indices for multiplexed sequencing of up to 48 reactions. 

Combine the kits to multiplex up to 96 reactions.

 

CUTANA™ CUT&Tag试剂盒特点

✔ 可对低数量的细胞进行可靠的分析

✔ 从细胞到测序仅需2天

✔ 与ChIP相比检测成本更低

✔ 独有的单管流程,最大限度提高回收率并简化您的工作流程


EpiCypher是一家成立于2012年的表观遗传学公司。从专有组蛋白肽阵列平台EpiGold™开始,EpiCypher开发了一系列同类产品。同时,EpiCypher是重组核小体制造和开发的全球领导者。利用其独有技术,不断添加高纯度修饰重组核小体(dNucs™)产品。dNuc™多样性的产品为破译组蛋白编码和加速药物开发提供了强大的工具。EpiCypher还将dNuc™技术广泛的应用于多种分析测定产品中,包括:SNAP-ChIP®Spike-in Controls(用于抗体分析和ChIP定量), EpiDyne®底物(用于染色质重塑和抑制剂筛选及开发),dCyher™测定(用于探究表观遗传蛋白质-组蛋白PTM结合相互作用)。最近,EpiCypher还推出了针对ChIC、CUT&RUN和CUT&Tag的高灵敏度表观基因组图谱CUTANA™分析。


如需了解更多详细信息或相关产品,请联系EpiCypher中国代理商-上海金畔生物 

Epicypher热销产品——CUTANA™ CUT&RUN Library Prep Kit

Epicypher热销产品——CUTANA™ CUT&RUN Library Prep Kit

核酸酶靶向切割和释放 (CUT&RUN)是建立在免疫探测技术上染色质图谱分析方法。在CUT&RUN中,融合蛋白AG-微球菌核酸酶pAG-MNase选择性原位切割抗体结合的染色质Figure 1)。该方法代测序(NGS)兼容,提供组蛋白翻译后修饰(PTMs)和染色质相关蛋白(如转录因子[TFs])的高分辨率全基因组图谱。

FIGURE 1 Overview of the CUTANA™ CUT&RUN protocol.


产品优势

 CUTANATM Library Prep Kit 是第一个专门为CUT&RUN分析开发的文库构建试剂盒。

•对CUT&RUN的方法进行了优化,对比多用途或ChIP-seq文库构建试剂盒更具优势。

•对于CUT&RUN产生的有限输入,工作流程非常稳定,为使用0.5-10 ng DNA的Illumina® NGS提供了高质量的文库。

•试剂盒包含CUT&RUN文库制备所需的所有材料(酶、引物、DNA纯化磁珠、缓冲液和PCR管)。

•可轻松搭配CUTANA™ CUT&RUN试剂盒(EpiCypher 14-1048)或CUT&RUN Protocol (EpiCypher.com/protocols)使用,实现工作流程集成,高通量检测和保证结果的可靠性,降低实验成本。

•可以有效制备组蛋白PTMs和染色质相关蛋白(如TFs)CUT&RUN DNA的文库。

 

Multiplexing Primers

Primer Set 1 includes i5 primers 1-8 and i7 primers 1-6 

Primer Set 1 includes i5 primers 1-8 and i7 primers 7-12

保存条件

OPEN KIT IMMEDIATELY and store components at room temperature and -20°C as indicated (see Kit Manual for full instructions). Stable for 6 months upon date of receipt.

Room Temperature (RT)

-20℃

8-strip Tubes

End Prep Enzyme

Ligation Enhancer

SPRIselectreagent manufactured by

Beckman Coulter, Inc.

End Prep Buffer

High Fidelity 2X PCR

Master Mix

0.1X TE Buffer

Adapter for Illumina®

U-Excision Enzyme

Ligation Mix

i5 and i7 Primers


数据示例

Epicypher热销产品——CUTANA™ CUT&RUN Library Prep Kit

FIGURE 1

CUT&RUN DNA Fragment Size Distribution Analysis. CUT&RUN was  performed as described above. Library DNA was  analyzed by Agilent TapeStation® , which  confirmed that mononucleosomes were  predominantly enriched in CUT&RUN (~300 bp  peaks represent 150 bp nucleosomes +  sequencing adapters). Peaks at ~380 bp  correspond to the SNAP-CUTANA™ K-MetStat Panel of spike-in controls(EpiCypher 19-1002).

Epicypher热销产品——CUTANA™ CUT&RUN Library Prep Kit

FIGURE 2

Representative Gene Browser Tracks. CUT&RUN was performed as described above. A representative 674 kb window at the SEPTIN5 gene is shown for three replicates (”Rep”) of IgG and H3K4me3 antibodies, as well as individual tracks for H3K27me3 and the transcription factor CTCF, demonstrating the robustness and reproducibility of the workflow with a variety of targets. Sequencing libraries prepared with the CUTANA CUT&RUN Library Prep kit produced the expected genomic distribution for each target. Images were generated using the Integrative Genomics Viewer (IGV, Broad Institute)

订购详情

货号

产品名称

规格

14-1001

CUTANA™ CUT&RUN Library Prep Kit with Primer Set 1

48 Reactions

14-1002

CUTANA™ CUT&RUN Library Prep Kit with Primer Set 2

48 Reactions

 


如需了解更多详细信息或相关产品,请联系EpiCypher中国代理商-上海金畔生物 

什么是CUT&Tag技术?

什么是CUT&Tag技术?

近年基因组学和表观遗传学领域引入了两种新方法:

核酸酶靶向切割和释放技术(CUT&RUN)

靶向剪切及转座酶技术(CUT&Tag)


CUT&RUN和CUT&Tag检测法正在取代ChIP-seq

简化的工作流程跳过了ChIP-seq实验法中的挑战性步骤,包括染色质片段化和抗体pull down,用更少的细胞和测序读数得到更佳的数据。

具体变现为:

1.低细胞需求量;

2.高吞吐量;

3.操作流程更简易;

4.低成本,测序读取次数更少;

5.数据质量可靠,重复性好

EpiCypher CUT&Tag:

孵育结合好特异性抗体与靶标蛋白后,加入蛋白 A、蛋白G与Tn5的复合物(pAG-Tn5),使得转座体进入细胞并与抗体结合,间接地固定在靶蛋白上;激活Tn5酶的切割活性,将靶蛋白结合的DNA区域切断,从而达到提取DNA、进行PCR扩增、构建文库的目的。在Tn5上融合了protein A/G抗体结合功能域的转座体pAG-Tn5是关键的进步,因为这一步允许研究者不必碎裂染色质以及进行传统的库准备步骤。

更多详细信息,请联系EpiCypher全国代理-上海金畔生物 

CUT&RUN的8个基本步骤

CUT&RUN的8个基本步骤

CUT&RUN的8个基本步骤


CUT&RUN只包含几个基本步骤!

第一步

分离细胞并固定到刀豆蛋白(ConA)磁珠上

第二步

透化细胞

第三步

加靶标特异性抗体孵育

第四步

pAG-MNase结合

第五步

pAG-MNase激活

第六步

DNA纯化

第七步

CUT&RUN文库构建

第八步

Illumina®下一代测序

具体信息请见下方~

 

步骤1:分离细胞并固定到刀豆蛋白(ConA)磁珠上

将细胞(或细胞核)与ConA包被的磁珠结合,ConA是一种与细胞表面蛋白结合的凝集素。该步骤不仅支持高通量方法,而且简化了后续从染色质片段里分离细胞的操作。

避免磁珠干燥或结块在本步骤中非常重要,因为这会导致样品损失并降低产量。关于确认细胞完整性及与ConA磁珠结合情况的重要质量控制检查信息,可以点击此处获取。除此之外,高质量的样本准备对CUT&RUN的成功也至关重要,某些类型的样本可能需要进行一定处理后方可使用,详情可点击Sample Prep查询。

 

步骤2:透化细胞

由于洋地黄皂苷是一种非离子生物洗涤剂,可在低浓度下透化细胞膜。因此,在本步骤中使用含有洋地黄皂苷的缓冲液对固定好的细胞进行透化处理。透化处理对于抗体与pAG-MNase的结合至关重要,并且为后续MNase消化获得的DNA能够扩散到溶液中提供先决条件。洋地黄皂苷的用量必须根据所用细胞的类型进行优化,以免在实验中细胞出现裂解或不完全透化的情况,关于优化处理的详细信息,请点击此处了解。

 

步骤3:加靶标特异性抗体孵育

将目标靶标的抗体添加到反应中,并在4℃下孵育过夜。我们建议每个实验中设置阴性对照(如IgG)和阳性对照(如H3K4me3)反应。

抗体的特异性和结合效率对于CUT&RUN的成功至关重要。事实上,这种检测的背景非常低,以至于低效率的抗体无法达到足够高的产量进行PCR和测序。相反,非特异性抗体可能会提供相当好的产量,但会导致错误的生物学解释。详情参考抗体选择和检测控制的附加说明。

 

步骤4:pAG-MNase结合

第二天,洗涤与磁珠结合的细胞,除去未结合及非特异性结合的抗体。在没有钙离子(Ca2+)存在的条件下,将pAG-MNase添加到反应体系中,以防止MNase的过早激活。pAG的免疫球蛋白结合特性会将MNase“栓”在抗体结合的染色质上。pAG-MNase孵育后,多次洗涤细胞/磁珠混合物,以去除过量的pAG-MNase,防止非特异性切割。

 

步骤5:pAG-MNase激活

向反应中加入Ca2+以激活MNase,MNase会在抗体结合处的两侧切割DNA。被切割下来的片段扩散至上清液中,而剩余的大块染色质保留在磁珠固定的细胞内。

由于MNase是一种加工酶,所以必须终止反应,以防止释放的DNA片段被过度消化掉。pAG-MNase孵育后,加入含有EDTA和EGTA的Stop缓冲液以螯合游离钙离子并终止酶活性。短暂加热反应体系以降解RNA,并将剩余的染色质片段释放至溶液中。

 

步骤6:DNA纯化

因为细胞仍与磁性ConA珠结合在一起,所以CUT&RUN富集DNA的分离很简单。利用磁性,将含有大量染色质的磁珠偶联细胞与剪切下的目标DNA片段分离开,目标DNA被留在溶液中。目标DNA片段纯化后,通过荧光测定(例如ThermoFisher QubitTM)进行定量。

DNA产量一般不作为表明CUT&RUN成功的指标,相反,当目标是~5 ng DNA时,后续CUT&RUN文库制备的效率较高。由于原始的CUT&RUN DNA产量通常低于Bioanalyzer / TapeStation的检测极限,所以不建议使用这些方法在Bioanalyzer / TapeStation上分析原始的CUT&RUN DNA。

EpiCypher还检测了阳性对照和实验靶标高于IgG阴性对照反应的产量(即使只是略高)。根据概述的指标确认好DNA质量后,即可进行下一步的文库构建。

 

步骤7:CUT&RUN文库构建

将修复纯化的CUT&RUN DNA连接到测序adapter上,并进行PCR扩增以生成测序文库。PCR扩增使用了针对CUT&RUN低产量和小片段规格的优化参数,条形码引物用于实现多路测序。EpiCypher的Library Prep Kit经过专门优化,可以进一步简化您的工作流程。

在测序之前,确认CUT&RUN成功的最佳方法是对纯化文库进行片段大小分布的分析。使用毛细管电泳(例如Agilent Bioanalyzer或TapeStation)确认CUT&RUN文库的片段大小分布和浓度。由于MNase将片段消化到核小体水平的分辨率,所以平均峰值一般约为~300 bp(~170 bp的片段DNA+adapter)。有关确保测序文库质量的更多详细信息,请参阅该文

 

步骤8:Illumina®下一代测序

文库以等摩尔比例汇集,并加载到所需的平台上进行测序。每个样本只需要300-800万次读取,就可以获得背景上的稳健信号(相比之下,ChIP-seq则需要超过2000万次读取),并且允许用户在单次运行中多路传输10-100个样本。

 

 

本文中所描述的技术为EpiCypher公司所属,均具有一项或多项专利。EpiCypher的注册商标和知识产权可见https://www.epicypher.com/intellectual-property/。本文中的所有其他商标和商品均为其各自公司所有。


本文翻译自链接https://support.epicypher.com/article/19-basic-steps-of-cut-run,如与原文有出入的地方,请以英文原文为准。

未经EpiCypher公司事先书面同意,本文件不得部分或全部复制。

 

关于EpiCypher公司:

EpiCypher是一家成立于2012年的表观遗传学公司。从专有组蛋白肽阵列平台EpiGold™开始,EpiCypher开发了一系列同类产品。同时,EpiCypher是重组核小体制造和开发的全球领导者。利用其独有技术,不断添加高纯度修饰重组核小体(dNucs™)产品。dNuc™多样性的产品为破译组蛋白编码和加速药物开发提供了强大的工具。

EpiCypher还将dNuc™技术广泛的应用于多种分析测定产品中,包括:SNAP-ChIP®Spike-in Controls(用于抗体分析和ChIP定量), EpiDyne®底物(用于染色质重塑和抑制剂筛选及开发),dCyher™测定(用于探究表观遗传蛋白质-组蛋白PTM结合相互作用)。最近,EpiCypher还推出了针对ChIC、CUT&RUN和CUT&Tag的高灵敏度表观基因组图谱CUTANA™分析。

如需了解更多详细信息或相关产品,请联系EpiCypher中国代理商-上海金畔生物 

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验?

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验?

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验?

被广泛使用的传统ChIP-seq与新技术CUT&RUN和CUT&Tag,如何决定哪种染色质分析法更适合您的实验呢?在这里,我们将根据EpiCypher的经验帮您确定最佳检测方法。


关键点1:为何要告别ChIP-seq?

● 样本要上百万个细胞——不适用于珍贵细胞类型或临床样本

● 繁琐的操作步骤——需要交联、染色质片段化和免疫沉淀(IP),实验周期约为一周

● 高测序深度——通常需要每个库2,000 – 4,000万个读段才能在背景上获得足够的信号

● 数据结果不精准 ——背景高,实验重复性差和有非特异性的peak

 

尽管存在以上短板,ChIP-seq仍然是几十年来应用最广泛的DNA-蛋白互作技术。然而,新方法、新技术往往给科学研究带来天翻地覆的变化,CUTANA™ CUT&RUN和CUT&Tag的出现解决了ChIP-Seq实验需要大量细胞,且重复性差、低信号、高背景等缺点,为研究DNA-蛋白质相互作用提供了新的有效工具。

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验? 

Figure 1: ChIP-seq与CUT&RUN和CUT&Tag的比较

 

与ChIP-seq相比,CUT&Tag和CUT&RUN具有许多优点。这两种检测方法都不需要交联、染色质片段化或免疫沉淀,即可提供低背景、高可靠性的实验结果。同时CUT&RUN和CUT&Tag的实验周期更短,所需样本细胞更少,测序深度更低。

 

常见问题 

科学方法在不断发展,在表观基因组学领域尤其如此,在过去的十年中,表观基因组学经历了快速的技术增长和扩张。尽管CUTANA™检测具有明显的优势,但许多研究人员对从ChIP-seq转换到CUTANA™仍很犹豫。在这里,我们罗列出可能会在ChIP-seq过渡到CUTANA™ CUT&RUN分析时常见的一些问题。

Q:我正在研究一种瞬态相互作用蛋白质,需要通过交联来稳定染色质上的目标定位。我最好的选择不是ChIP-seq吗?

A: CUT&RUN可以生成背景干净的实验数据,免受高度交联相关的可变IP效率的干扰。如果需要,CUTANA检测可与轻到中度交联条件兼容(Fig. 2)。然而,ChIP-seq所需的高度固定方式不能应用于CUT&RUN(或CUT&Tag)。 

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验? 

Figure 2: CUT&RUN在样品处理过程中保留了全基因组富集。热图中使用新鲜、冷冻或交联的K562细胞和新鲜细胞核,显示转录起始位点(TSS)的CUT&RUN H3K4me3信号,红色表示H3K4me3高富集。

 

Q:我正试图将我的结果与已有的ChIP-seq数据进行比较——我需要继续做ChIP-seq吗?

A:虽然ChIP-seq和CUT&RUN是不同的操作步骤,但原始测序数据是相似的,并且使用相同的工具进行处理和可视化。在已有的文献中多次发表过这两种方法的数据比对。主要的区别是CUT&RUN数据的背景要低得多,所需的细胞和测序读段也比ChIP-seq少了10倍。

 

Q:我已经有了一个很好的ChIP-seq操作方案或有效的抗体,是否应该坚持用下去?

A:与CUT&RUN相比,即使是优化后的ChIP-seq,也需要更多的时间、细胞和测序深度。此外,ChIP-seq本身存在低通量、高背景和成本较高的问题,CUTANA™ CUT&RUN完美的解决了这些问题。与ChIP-seq需要交联、片段化和IP等条件相比,CUT&RUN对大多数目标蛋白和细胞类型的优化需求更低。

 

Q:由于抗体在ChIP中效果很好,不想换掉ChIP-seq。

A:抗体性能并不是选择ChIP-seq的一个很好的理由。ChIP级别抗体并不可靠,尤其是组蛋白PTMs。EpiCypher发现超过70%的组蛋白赖氨酸甲基化和酰基化PTMs抗体显示明显的交叉反应性和目标蛋白结合效率低的问题。这包括有较高引用率的H3K4me3、H3K9me3、H3K27ac和H3K27me3抗体。非组蛋白PTM靶标,如转录因子,也面临着类似的挑战。


关键点2:CUT&RUN——“万能”染色质分析工具

CUT&RUN是大多数表观基因组实验的理想工具。它为细胞样本、目标蛋白兼容性和测序成本之间提供了很好的平衡。该技术操作非常简单,可根据具体实验情况进行优化调整,且随着EpiCypher开发的CUTANA™ CUT&RUN试剂盒的出现而变得更加容易。


与ChIP-seq相比,CUT&RUN的优点如下:

● 针对不同目标蛋白的高分辨率数据:CUT&RUN与组蛋白PTMs和染色质相关蛋白(包括转录因子、 表观遗传学的识别、记录和消除蛋白)兼容,(图3)。 CUT&RUN还可生成很难使用ChIP-seq进行分析的染色质重塑酶图谱,这也突出了CUT&RUN的另一个关键优势。

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验? 

Figure 3: CUTANA™ CUT&RUN分析每次反应仅使用300 – 800万测序读段,为不同的目标蛋白生成高分辨率数据。*每个实验都使用CUTANA™CUT&RUN试剂盒和500,000个K562细胞进行。

 

● 需要的细胞数量较少:虽然建议使用500,000个以上的细胞,但CUTANA™ CUT&RUN在不改变操作步骤的前提下,可将细胞数量降低至5,000个,从而能够分析不常见的细胞和较珍贵的样本。目前,CUT&RUN已被用于分析小鼠和人类原代细胞、患者来源的异种移植(PDX)、流式细胞仪分选细胞、免疫细胞等。

● 操作步骤简单:CUTANA™ CUT&RUN在3天内即可完成从细胞到文库的建立。还适用于多道移液器和8联排管,提高了分析的重复性和通量。

● 测序成本降低:只需要300 – 800万个测序读段,高通量测序可以检测更多样本。

● 减少实验中需要优化的步骤:如上所述,CUT&RUN跳过了ChIP-seq中最具挑战性的部分(染色质片段化等),只需要较少的优化步骤。EpiCypher的CUTANA™CUT&RUN Kit和CUT&RUN Library Prep Kit使这一过程更加简单。

注:根据EpiCypher的经验,与CUT&Tag相比,CUT&RUN更容易学习和排除故障,特别是在使用EpiCypher的CUT&RUN检测试剂盒和Library Prep试剂盒时。

关键点3:CUT&Tag——“专业级别”染色质分析工具

 

CUT&Tag更适合在染色质分析测定方面具有经验的研究人员。如果您是:

● 刚刚开始接触表观基因组分析测定

● 经常使用ChIP-seq,打算开始尝试CUTANA染色质分析

● 打算尝试一个新的目标蛋白或使用一个新的细胞类型

● 低丰度目标蛋白,如转录因子和其他染色质相关蛋白

在这些情况中,EpiCypher建议使用CUT&RUN,它有一个简单明了的操作步骤,并可为大多数目标蛋白和细胞类型生成可靠精准的实验结果。


CUT&Tag比CUT&RUN更具挑战性

许多研究人员想要用CUTANA CUT&Tag进行染色质分析实验,因为该方法跳过了传统的文库准备步骤,只需要10万个细胞核即可获得高质量的测序结果。EpiCypher通过的Direct-to-PCR技术进一步简化了CUT&Tag过程,只需要一个管就可完成从细胞到PCR文库扩增。

尽管存在以上优势,根据EpiCypher的经验,CUT&Tag对相关实验操作熟悉度有较高的要求。样品准备不充分或细胞核太少,ConA bead丢失和抗体特异性或效率较低都会影响CUT&Tag的实验结果。与CUT&RUN相比,CUT&Tag也会容易出现更高的duplication rates,并可能在开放染色质区域出现背景信号。基于这些原因,我们推荐大多数用户使用CUT&RUN。


CUT&Tag并不适用于所有目标蛋白

EpiCypher推荐使用CUTANA™ CUT&Tag来研究组蛋白PTMs(图4)和选择转录因子(即CTCF)在全基因组上的结合或分布位点。不建议将CUT&Tag用于染色质相关蛋白分析,这些蛋白通常与染色质结合较弱,在高盐CUT&Tag溶液中剥离。这是该方法的一个主要缺点,也是EpiCypher继续建议大多数用户使用CUT&RUN的原因之一。

注:在ChIP中,样品被交联以稳定染色质上的蛋白质,因此允许使用高盐缓冲液。虽然CUT&Tag与轻度到中度交联兼容,但这些条件严重降低了收率。相反,EpiCypher建议在CUT&RUN中使用新鲜细胞样本。

从ChIP-seq到CUT&RUN和CUT&Taq,哪种染色质分析法更适用您的实验? 

Figure 4: CUTANA™ CUT&Tag是分析组蛋白PTMs的理想工具。

 

CUT&Tag是低样本量和特殊应用的理想选择

尽管上面列出了一些注意事项,但值得注意的是CUT&Tag是专门为少量细胞的染色质分析而设计的,是CUT&RUN的补充技术。

为什么CUTANA™ CUT&Tag是低样本量应用的理想选择?

● Tn5 tagmentation消除了传统的交联、染色质片段化、IP和文库准备步骤,减少了操作时间并最大化靶标回收率。当尝试用少量或单细胞进行分析时,精简的处理步骤是至关重要的。在CUT&Tag中,pAG-Tn5准确导向结合区域并进行DNA切割,省去了ChIP-seq中最耗时的步骤。

● EpiCypher的Direct-to-PCR CUT&Tag技术允许您在一个管中完成从细胞到PCR文库的扩增。而每次细胞/DNA被洗涤,转移到新的试管中,或在进行纯化时,都会面临丢失样本的风险。Direct-to-PCR CUT&Tag只需要一个DNA纯化步骤,可以在短短两天内完成。

● CUTANA CUT&Tag操作中首选100,000个核,但对于一些选定的目标,可低至1,000个核(图5)。由于CUTANA CUT&RUN分析验证过的最少是5,000个细胞,因此CUT&Tag为研究人员突破表观基因组学的检测界限提供了解决方法。

 

Figure 5: CUT&Tag仅使用1000个细胞即可生成低丰度(H3K4me3)和高丰度(H3K27me3)组蛋白PTMs的高质量图谱。

 

选择适合您的染色质分析测定方法 

下面是一个快速检查表,可以帮助您为您的项目选择最佳的检测方法:

(一)推荐使用CUT&RUN作为首选的染色质分析检测方法,适用于多种目标蛋白、细胞类型和细胞处理条件。如果每次反应可以有5,000到500,000个细胞,并且满足以下条件,CUT&RUN为最优选择:

1.刚开始接触染色质分析或CUTANA™技术

2.新的目标蛋白或使用新的细胞类型

(二)CUT&Tag是创新型应用于极少量细胞样本的分析方法。适合于有经验的研究人员。

1.CUT&Tag适用于组蛋白PTMs分析

2.CUT&Tag实验条件通常需要比CUT&RUN更多的摸索及优化

3.CUT&Tag每次反应需要1,000至100,000个细胞

 

References

1. Preissl S et al. Characterizing cis-regulatory elements using single-cell epigenomics. Nat Rev Genet (2022). PubMed PMID: 35840754.

2. Mehrmohamadi M et al. A Comparative Overview of Epigenomic Profiling Methods. Front Cell Dev Biol 9, 714687 (2021). PubMed PMID: 34368164.

3. Carter B et al. The epigenetic basis of cellular heterogeneity. Nat Rev Genet 22, 235-50 (2021 PubMed PMID: 33244170.

4. Agbleke AA et al. Advances in Chromatin and Chromosome Research: Perspectives from Multiple Fields. Mol Cell 79, 881-901 (2020). PubMed PMID: 32768408.

5. Kaya-Okur HS et al. Efficient low-cost chromatin profiling with CUT&Tag. Nat Protoc 15, 3264-83 (2020). PubMed PMID: 32913232.

6. Kaya-Okur HS et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10, 1930 (2019). PubMed PMID: 31036827.

7. Skene PJ et al. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat Protoc 13, 1006-19 (2018). PubMed PMID: 29651053 .

8. Skene PJ et al. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, (2017). PubMed PMID: 28079019 .

9. Shah RN et al. Examining the Roles of H3K4 Methylation States with Systematically Characterized Antibodies. Mol Cell 72, 162-77 e7 (2018). PubMed PMID: 30244833.

10. Liu T. Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells. Methods Mol Biol 1150, 81-95 (2014). PubMed PMID: 24743991.

11. Zang C et al. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25, 1952-8 (2009). PubMed PMID: 19505939.

12. Evans MK et al. Ybx1 fine-tunes PRC2 activities to control embryonic brain development. Nat Commun 11, 4060 (2020). PubMed PMID: 32792512.

13. Laczik M et al. Iterative Fragmentation Improves the Detection of ChIP-seq Peaks for Inactive Histone Marks. Bioinform Biol Insights 10, 209-24 (2016). PubMed PMID: 27812282.

14. Meers MP et al. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenetics Chromatin 12, 42 (2019). PubMed PMID: 31300027.

15. Yu F et al. CUT&RUNTools 2.0: A pipeline for single-cell and bulk-level CUT&RUN and CUT&Tag data analysis. Bioinformatics (2021). PubMed PMID: 34244724.

16. Liu N et al. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 173, 430-42 e17 (2018). PubMed PMID: 29606353.

17. de Bock CE et al. HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development. Cancer Discov 8, 616-31 (2018). PubMed PMID: 29496663.

18. Janssens DH et al. Automated in situ chromatin profiling efficiently resolves cell types and gene regulatory programs. Epigenetics Chromatin 11, 74 (2018). PubMed PMID: 30577869.

19. Uyehara CM et al. Direct and widespread role for the nuclear receptor EcR in mediating the response to ecdysone in Drosophila. Proc Natl Acad Sci U S A 116, 9893-902 (2019). PubMed PMID: 31019084.

20. Zhang XL et al. Reorganization of postmitotic neuronal chromatin accessibility for maturation of serotonergic identity. Elife 11, (2022). PubMed PMID: 35471146.

21. Wang J et al. EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol 24, 384-99 (2022). PubMed PMID: 35210568.

22. Hainer SJ et al. Profiling of Pluripotency Factors in Single Cells and Early Embryos. Cell 177, 1319-29 e11 (2019). PubMed PMID: 30955888.

23. Mathsyaraja H et al. Max deletion destabilizes MYC protein and abrogates Emicro-Myc lymphomagenesis. Genes Dev 33, 1252-64 (2019). PubMed PMID: 31395740.

24. Roth TL et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405-9 (2018). PubMed PMID: 29995861.

25. Collins PL et al. DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nat Commun 11, 3158 (2020). PubMed PMID: 32572033.

26. Yusufova N et al. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 589, 299-305 (2021). PubMed PMID: 33299181.

27. Janssens DH et al. Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia. Nat Genet 53, 1586-96 (2021). PubMed PMID: 34663924.

28. Henikoff S et al. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation. Elife 9, (2020). PubMed PMID: 33191916.

29. Deng Y et al. Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular level. Science 375, 681-6 (2022). PubMed PMID: 35143307.

30. Gopalan S et al. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol Cell 81, 4736-46 e5 (2021). PubMed PMID: 34637755.

31. Xiong H et al. Single-cell joint detection of chromatin occupancy and transcriptome enables higher-dimensional epigenomic reconstructions. Nat Methods 18, 652-60 (2021). PubMed PMID: 33958790 .

32. Zhu C et al. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat Methods 18, 283-92 (2021). PubMed PMID: 33589836.

33. Janssens DH et al. CUT&Tag2for1: a modified method for simultaneous profiling of the accessible and silenced regulome in single cells. Genome Biol 23, 81 (2022). PubMed PMID: 35300717.

34. Wu SJ et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat Biotechnol (2021). PubMed PMID: 33846646.

35. Bartosovic M et al. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat Biotechnol (2021). PubMed PMID: 33846645.

 

 

如需了解更多详细信息或相关产品,请联系EpiCypher中国代理商-上海金畔生物